Your Custom Power PCB Manufacturer in China Over 12 Years

PCBMay is a professional Power PCB manufacturer in China since 2008, we could provide many different kinds of power PCBs for your project.

  • Over 12 years power PCB manufacturing experience
  • The copper thickness to be reached 12oz
  • Provide WIP(work in process) report to you each week
  • 100% E-test and AOI inspection
  • 24h quick turn service for your prototype of power PCB
Get Our Best Quotation
Upload File

PCBMay: Your Skillful Power PCB Supplier in China

As a leading manufacturer for power PCB, PCBMay could help you to produce all types of power PCBs from 2 oz copper to 10 oz copper finished product. You just send your Gerber data to us, we will offer you high-quality at a guaranteed competitive price.

There are over 500 workers in our workshop and the monthly capacity is 40,000 square meters, so you don’t worry about our quality and delivery time. We could reach your requirement even in the peak season.

This is a custom-made product for power PCB, so there may be happened some quality complaints. We will provide an 8D report for each quality complaint and then you will know the rooted cause. If it is our problem, we will remake the product for free for you.

All Different Types of Power PCB Speed up Your Projects

Power PCB (2oz)

This is a 4layer power PCB, whose copper thickness of the inner and outer layer is 2oz, the trace width/space is 10mil/10mil, what’s more, this is a normal board and most PCB manufacturers can produce it, whose application is power supplies, power converters.

Power PCB (3oz)

Heavy copper is more commonly used for PCBs featuring 3oz of copper in the internal and external layers. This term is also applied to any circuit with a copper thickness of more than 4 Oz/ft2. The term extreme heavy copper PCB refers to PCBs with 20 Oz/ ft2 to, which has 200 oz. per ft2

Power PCB (4oz)

This is a 6layer heavy copper PCB with 4oz, the applications are electric vehicles, simulating solar arrays for the development of inverters, steering magnets for particle accelerators, powering radar systems, driving traction controllers for locomotive development.

Power PCB (5oz)

Heavy copper printed circuit boards feature 5 ounces of copper in outer/inner layers. These printed circuit boards are valued immensely, due to their thermal management capabilities. The heavy copper composition helps keep inner components cool, and improves their performance.

Power PCB (6oz)

PCBMay is a highly experienced PCB manufacturer that can develop and produce a superior heavy copper PCB product of the highest quality. We can offer a 6oz thick copper PCB manufacturing service,whose trace width/space is 16/22mil,surface finished is Leaded free HAL.

Power PCB (7oz)

Heavy copper PCB has the capability to conduct and implement an additional layer to keep things safe and work perfectly.It is the newest trend in the PCB industry that ensures hefty electrical current flow through the electrical circuits.This kind of heavy copper 7oz is mostly prototyping PCB.

PCBMay is an Expert Power PCB Manufacturer for You

PCBMay is one of your trusted suppliers of power PCB since we fabricate to make full use of our high technology equipment. We’re focusing on high-quality quick-turn prototypes and medium production runs for power PCB.

We could offer power PCBs with different applications like power supply, computer power, medical device power, UPS system, radar systems, and consumer products.

We are very pleased to serve our customers, in order to gain customer’s satisfaction, we produce your power PCB in high-quality, and can be purchase at affordable costs.

VPC Plating Line

Related Power PCB Boards

Power PCB (8oz)
Power PCB (8oz)
Materials are costly, and lead times are typically longer for heavy copper laminates and not always in stock. As a leading manufacturer in heavy copper and extreme copper PCBs, we understand the process and what is needed to get the job done right the first time,moreover,we can give you some design advice for your products.
Power PCB (9oz)
Power PCB (9oz)
Are you looking for a PCB manufacturer who can help you to produce heavy copper PCB?PCBMay is one of your best choices.This is a 2layer board,whose specification as following:9oz finished copper,LF HAL surface finished,4.0mm board thickness,green soldermask.The final product is from medical instruments.
Multilayer PCB
Power PCB (10oz)
The heaviest copper board we made was 10oz.Heavy copper PCB used for welding equipment,power suppliers, solar panel,automotive,electrical power distribution,power converters.heavy copper board has high voltage/current ,it is very dangerours when supply power,the board must be the right copper thickness.
Power PCB (12oz)
Power PCB (12oz)
PCBMay can produce the finished copper 12oz for outer layer, no mater they are double sided layer or multilayer PCB, or prototype PCB or large volume PCB, we can always support you here.

Power PCB Production Details As Following Up

Lamination
Brown Oxide
Etching
PTH Line
VCP Plating   AOI  Exposure E-Test
FeatureCapability
Quality GradeStandard IPC 2
Number of Layers2 – 20layers
Order Quantity1pc – 10000+pcs
Build Time2days – 5weeks
MaterialFR4 TG130,FR4 High-TG,Rogers,PTFE Laminates
Board SizeMin 10mm x 10mm | Max 500mm x 600mm
Board Thickness0.4mm – 3.2mm
Copper Weight (Finished)2oz – 12.0oz
Min Tracing/Spacing4mil/4mil
Solder Mask SidesAs per the file
Solder Mask ColorGreen, White, Blue, Black, Red, Yellow
Silkscreen SidesAs per the file
Silkscreen ColorWhite, Black, Yellow
Surface FinishHASL – Hot Air Solder Leveling
Lead Free HASL – RoHS
ENIG – Electroless Nickle/Immersion Gold – RoHS
Immersion Silver – RoHS
Immersion Tin – RoHS
OSP – Organic Solderability Preservatives – RoHS
Min Annular Ring4mil
Min Drilling Hole Diameter6mil
Other TechniquesGold fingers
Blind/Buried Vias
Countersink Holes

1, What Thickest Copper Can You Make?

We can produce heavy copper reach 12oz.

2, What Is The Standard Delivery Time For Power PCB Boards?

It depends on the exact copper of each board, mostly it will be inscreasing 1-2days after the copper adds 1oz from beginning of 3oz.

3, Can You Produce The Different Copper Thickness For Each Layer?

Yes, we can, typically the copper from inner layer and outer layer is different, such as 2oz for inner layer, 6oz for outer layer.

4, What Is The Trace Width And Space For Heavy Coper PCB?

It depends, normally, 2OZ: 6/8mil, 3OZ: 6/12mil, 4OZ: 7.5/15mil,5OZ: 9/18mil, 6OZ: 10/21mil, 7OZ: 11/25mil, 8OZ: 12/29mil, 9OZ: 13/33mil , 10OZ: 14/38mil

5, What Is The Standard Board Thickness And Can You Produce 2.4mm Or 3.2mm Thick Boards?

The standard board thickness is 1.6mm , this provides a good balance between strength and weight. A thickness of 2.4mm or 3.2mm is also available.

6, What Copper Thickness Do You Use And Are There Other Thicknesses Available?

The copper thickness of most PCB boards is 35um(1oz),our capability can reach 12oz.

Why Choose PCBMay for Your Power PCB Projects

As an experienced power PCB manufacturer in China, we could make the copper thickness will be reached to be 12oz of power PCB.

From single-sided layer to multilayer PCB, from the rigid printed circuit board, flexible PCB to rigid-flex PCB, power PCB is used mixed with them.

As an ISO and UL certificated factory, PCBMay strictly controls the quality of products and provides customers’ high-quality power PCBs.

We also make sure to deliver the product within the scheduled delivery time. PCBMay assures the perfect product to our customers since we use our latest machinery equipment.

Power PCB

Power PCB

If you are looking for a power PCB for your project, PCBMay assures you the best, high-quality product and offers you excellent services.

At PCBMay, customer satisfaction is our goal. As long as you have the request, please let us know it, we will do our best to match it.

Please send your quote to us right now, we will offer the quotation immediately.

Power PCB: The Ultimate FAQ Guide

In the past, forming a power and ground plane with a four-layer board solved most of the power integrity problems.

In addition, in order to avoid small power supply problems on the power PCB, it was also effective to insert a decoupling capacitor between the power supply and ground for each IC in addition to the power supply plane.

However, in recent years, not only the cost and development schedules of PCBs but also area requirements have become stricter.

And it is difficult to solve problems using only conventional methods.

As a result, designing a power distribution circuit built into a PCB has become a daunting task.

What is Power PCB

The Power PCB is the backbone of all modern electronics. This detail is in every device.

Smartphones, keyboards, and mice, laptops, and computers – each of these devices contain one or more printed circuit boards.

Power PCB

Power PCB

General Thickness of Power PCB

While the circuit thickness of a general printed circuit board is 35 μm, a circuit with thick copper up to 2000 μm has been realized, making it possible to handle large currents.

For circuits with a large electrical load such as high voltage and high current, the width of the wiring can be made narrower by making the wiring thicker in the vertical direction.

It is very effective for downsizing the device.

Furthermore, when a thick copper circuit is used for the surface layer. The stability of surface mount components is improved due to the wide top dimension.

Similarly, half of the circuit is buried in the resin. Solder flow can be suppressed and solder mounting reliability is also improved.

This has also led to an improvement in the yield rate in terms of Power PCB board manufacturing.

It can reduce the risk of air bubbles entering the insulating protective film (green resist) and the difficulty of silk character printing.

In addition, it is necessary to pour resin paste between circuits to form thick copper circuits by metal cutting of other companies.

But since the construction method is realized by prepreg and vacuum lamination press, which are general methods for multi-layer boards, there is also a risk of failure. Since it can be reduced and no special equipment is required.

Thick copper high-current Power PCB board does not require circuit joints because it is not a circuit formed by metal cutting.

And it does not require a process to break the joints after stacking. Since the pattern wiring is made as it is with thick copper to realize a natural circuit formation, it is possible to support a high-electricity design with a higher degree of freedom.

A printed circuit board is a plate made of a dielectric on which at least one electrically conductive circuit is formed (usually by a printed method).

A printed circuit board (PCB) is designed for the electrical and mechanical connection of various electronic components or the connection of individual electronic components.

Electronic components on the PCB are connected by their terminals with the elements of the conductive pattern, as a result of which the electronic module (or mounted printed circuit board) is assembled.

You will see more details about power PCBs:

What are Types of Power PCBs

1) Single-Sided Power PCBs.

Boards on a flat layered dielectric;

Boards on embossed cast dielectric;

Boards without hole plating;

Boards with holes plated. These boards are more reliable in operation because better adhesion of the mounted IC and ERE with printed conductors and with the mainboard is provided.

2) Double Sided Power PCBs

Dielectric boards;

Boards on a metal substrate. They are used when it is necessary to provide heat removal when placing heat-generating ERE, semiconductor devices and ICs of a higher power on the board.

3) Multilayer Power PCBs

Multilayer printed circuit boards are boards that are composed of alternating layers of insulating material and a conductive pattern. The drawing is interconnected with spacers into a monolithic structure by pressing.

Laminated boards;

Boards on a ceramic base. These power PCB boards are screen printed with conductors.

At a temperature of about 700 o, conductors and resistors are burned into the base, previously fired at a temperature of 1600 o.

Multilayer Power PCB

Multilayer Power PCB

The result is a strong, ceramic, chemically inert monolithic structure with stable parameters and relatively high thermal conductivity;

  • Boards without interlayer connections;
  • Boards with interlayer connections

4) Flexible Power PCBs.

Flexible boards are used in structures where they are subjected to constant or intermittent bending stress.

Therefore, one of the most important characteristics of flexible printed circuit boards is the high resistance of dielectric materials to mechanical stress, i.e., to the separation of printed conductors from the base. Flexible loops and cables.

How do We Characterize Ceramic Materials in Power PCB?

Ceramic materials are characterized by high mechanical strength, which changes slightly in the temperature range 20-700o, stability of electrical and geometric parameters, low (up to 0.2%) water absorption, and gas evolution when heated in a vacuum.

Disadvantages of ceramic materials: they are fragile and have a high cost.

PCB manufacturing methods are divided into three groups: subtractive, additive, and sequential build-up.

With subtractive methods, a conductive pattern is formed by removing the foil from unprotected areas of the surface.

To do this, a diagram of the circuit is applied to the foil dielectric, and the unprotected sections of the foil are etched away.

What are the Disadvantages of Subtractive Chemical Method?

The disadvantages of the subtractive chemical method include significant copper consumption and the presence of lateral undercutting of printed conductor elements, which reduces the adhesion of the foil to the base.

This drawback is devoid of the additive method of manufacturing PP, based on the selective deposition of chemical copper on a non-foil dielectric.

In this case, a dielectric is used with a catalyst introduced into its composition and an adhesive layer on the surface.

PCBs manufactured by the additive method have a high resolution (conductors up to 0.1 mm wide), production costs of such boards are reduced by 30% compared to subtractive methods, copper, etching chemicals are saved and the environmental situation in enterprises is improved.

With the semi-additive, or chemical-galvanic method on a dielectric base, a continuous conductive layer is obtained by chemical deposition and then strengthened to the required thickness at the locations of the printed conductors and contact pads by the electrochemical method.

In this case, the best adhesion of the PP pattern to the dielectric is achieved.

The sequential build-up method is used to form a multilayer structure on a ceramic board, consisting of alternating insulating and conducting layers.

In the insulating layers in the places where the interlayer transitions are created, windows are made through which, when the next conductive layer is applied, an electrical interlayer connection is formed.

Thus, the production of power PCB is a laborious and costly process.

The choice of production methods, materials must be selected specifically for each type of product, taking into account the requirements of GOSTs and the conditions of production and operation.

Power PCB

Power PCB

The Power Supply System in the High-speed Circuit System

The power supply system in the high-speed circuit system can usually be divided into three physical subsystems: chip, integrated circuit packaging structure, and PCB.

The power grid on the chip is composed of several metal layers alternately placed. Each metal layer is composed of thin metal strips in the X or Y direction to form a power or ground grid. Via holes connect the thin metal strips of different layers.

For some high-performance chips, a lot of decoupling units are integrated regardless of the core or IO power supply.

The integrated circuit packaging structure, like a reduced PCB, has several layers of power or ground planes with complex shapes.

On the upper surface of the package structure, there is usually a place to install the decoupling capacitor.

Power PCB usually contains a large continuous area power and ground plane, as well as some large and small discrete decoupling capacitor components, and a power rectifier module (VRM).

Bonding wires, C4 bumps, and solder balls connect the chip, package, and PCB together.

The entire power supply system must ensure that each integrated circuit device provides a stable voltage within the normal range.

However, switching currents and parasitic high-frequency effects in power supply systems always introduce voltage noise.

AC Power Supply Ground Impedance Analysis

Many people know that a pair of metal plates constitutes a plate capacitor, so they think that the characteristic of the power supply plate layer is to provide plate capacitance to ensure the stability of the supply voltage.

When the frequency is low and the signal wavelength is much larger than the size of the panel, the power board layer and the floor do indeed form a capacitor.

However, when the power PCB frequency increases, the characteristics of the power supply board layers begin to become complicated.

More precisely, a pair of flat plates forms a flat plate transmission line system.

The noise between the power supply and the ground, or the corresponding electromagnetic field, propagates between the boards according to the transmission line principle.

Power PCB

Power PCB

When the noise signal propagates to the edge of the plate, part of the high-frequency energy will be radiated, but a larger part of the energy will be reflected back.

Multiple reflections from different boundaries of the plate constitute a resonance phenomenon in the PCB.

Why Decoupling is Effective in Power PCB?

In-chip decoupling is very effective, but the price is to use valuable space in the chip and consume more leakage current.

Moving the decoupling capacitors in the chip to the package structure may be a good compromise, but it requires the designer to have knowledge of the entire system from the chip, the package structure to the PCB.

But usually, PCB designers cannot obtain the design data of the chip and package structure and the corresponding simulation software package.

For integrated circuit designers, usually do not care about the lower-end packaging and circuit board design.

However, it is obvious that using the concept of power PCB collaborative design to optimize the analysis and design of the power supply system of the entire system, the chip-package-circuit board is the future development trend. Some companies that are at the forefront of electronic design have actually done so.

Important Instructions for Manufacturing Power PCB

Please also pay attention to the effect of reducing the board size by making the pattern width narrower. Our high-current circuit board is more expensive than generally printed circuit boards, but the circuit board itself can be made smaller, so we also have an element of cost reduction.

The Power PCB is an important part of an electronic product. The design of the linear DC power supply circuit directly affects the performance of the product. Power PCB of our electronic products mainly includes linear DC power supplies and high-frequency switching power supplies.

In theory, the linear DC power supply is how much current the user needs. How much current the input end must provide? The switching power supply is how much power the user needs, how much power the input end provides.

Power PCB Ideal for Mounting power Devices

Power PCB is ideal for downsizing devices with large electrical loads. Such as:

  • Large current control circuits for electric vehicles
  • Hybrid vehicles
  • Robots
  • High-power power supplies
  • Switching, motor circuits, breakers, fuse boxes, etc.

Power PCB is effective in all these fields.

Compared with screwed copper plate wiring such as bus bar (BUS-BAR), in terms of production, it is possible to consider assembly cost reduction and stable production plan by responding to the printed circuit board production line.

Nowadays, the updating speed of electronic products is extremely fast. It is simply overwhelming.

Power PCB design engineers are more inclined to choose AC/DC adapters that are easily available in the market.

And install multiple sets of DC power supplies directly on the PCB of the system.

Since the electromagnetic interference generated by the switching power supply will affect the normal operation of its electronic products.

The correct power supply PCB layout becomes very important.

Get Our Best Quotation
Upload File
Scroll to Top

Get a Quick Quote!

x
Upload File

Get a Quick Quote!

x
Upload File